Wait a second...
Nepřihlášený uživatel
You are here: UCT PragueFETDE  → Research → Energy and Material Utilization of Biomass, Alternative Fuels and (Bio)Wastes
iduzel: 58693
idvazba: 68962
šablona: stranka
čas: 16.4.2024 20:37:30
verze: 5378
uzivatel:
remoteAPIs:
branch: trunk
Server: 147.33.89.150
Obnovit | RAW
iduzel: 58693
idvazba: 68962
---Nová url--- (newurl_...)
domena: 'uen.vscht.cz'
jazyk: 'en'
url: '/research/58693'
iduzel: 58693
path: 8548/7922/7927/7935/11176/58693
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW

Energy and Material Utilization of Biomass, Alternative Fuels and (Bio)Wastes

Contact: Assoc. Prof. Michael Pohořelý, Ph.D. (michael.pohorely@vscht.cz)                    ORCiD                         ResearcherID: H-3505-2014

Our research group focuses primarily on thermochemical utilization of waste, solid alternative fuels, biowaste, and biomass, and on the circular economy of products in the energy, heating, and waste management sectors. Our research focuses mainly on current energy topics with the aim of increasing the use of renewable energy and alternative fuels. We collaborate with foreign universities, e.g., in Belgium (Ghent University) or China (Foshan University) and various companies in the private sector within our research. We train young professionals with the possibility of their employment in a wide range of energy fields for the private or academic sector. We welcome new colleagues with interest in power engineering and waste management of the 21st century.

The topics of B.Sc./M.Sc. theses are available in the SIS UCT and PhD theses on the UCT website.

If you are interested in the announced theses or any of the projects or have your own topic in the field of energy and material utilization of biomass, alternative fuels, or waste, do not hesitate to contact us with a possibility to arrange an individual meeting. We would be happy to welcome you to our team.

Focus of the department:

Power Engineering; Alternative Energy Sources; Combined Heat and Power Engineering; Heat Energy Accumulation; Energy and Material Utilization of Wastes, Solid Alternative Fuels, Biowastes and Biomass; Chemistry of the Fundamentals of Combustion, Gasification and Pyrolysis; Producer Gas / Syngas and Flue Gas Treatment Processes; Analysis of Solid Fuels, Biofuels and (Bio)Wastes.

Subgroups:

  • Thermochemical processes (Group of Pyrolysis and Gasification)
  • Analysis of solid fuels, biofuels, (bio)wastes and samples from power engineering sector
  • Energy savings and accumulation

 

Thermochemical processes

Contact: Assoc. Prof. Michael Pohořelý, PhD  – Michal Jeremiáš, PhDJosef Farták, PhD  Dr. Jaroslav Moško, PhD Matěj Hušek   Vineet Singh SikarwarKateřina Sukdolová  – Ritik Tomar  Anežka Sedmihradská  Zdeňka Tomášová 

The subgroup of thermochemical processes collaborates with: Department of Gaseous and Solid Fuels and Air Protection (University of Chemistry and Technology, Prague, the Czech Republic), Institute of Chemical Process Fundamentals of CAS, Institute of Plasma Physics of CAS, Institute of Rock Structure and Mechanics of CAS (all the Czech Academy of Sciences, Prague, the Czech Republic), Faculty of Environmental Sciences (Czech University of Life Sciences, Prague, the Czech Republic) Foshan University and Department of Green Chemistry and Technology (Ghent University, Ghent, Belgium).

Key research areas:

  • Advanced processes for pyrolysis and gasification
  • Medium and high temperature gas cleaning for industry scale applications
  • Material and energy utilization of sewage sludge – phosphorus recovery
  • Biochar production, characterization and utilization
  • Chemical recycling of waste plastics

The subgroup’s research focuses on the thermochemical conversions of different materials (biomass, sewage sludge, plastic wastes, etc.). The laboratory research is orientated towards the chemistry of fundamental reactions and the purification of gases to the levels acceptable in advanced applications such as SOFC. Pilot scale research on the development of combined heat and power units with the parallel production of biochar is realised with our industrial partner. Energy and material utilization of sewage sludge is also explored with the goal to provide a sustainable phosphorus product and usable energy. Other research is oriented to the treatment of primary pyrolysis gas from the pyrolysis of plastic waste to the quality acceptable by refinery/petrochemical industry.


 

Analysis of solid fuels, biofuels, (bio)wastes and samples from power engineering sector

Contact: Josef Farták, Ph.D. Ivo Jiříček, Ph.D. David Bouška

The analytical (sub)group focuses on supporting the research part of our department and offers service activities for industry companies.

In the field of analysis of solid samples, our subgroup is able to provide standardized analytical methods. The subgroup also develops new methods to fast and accurate determination of all necessary components in solid samples.


 

Energy Conservation and Storage

Contact: Josef Farták, Ph.D. Ivo Jiříček, Ph.D.

In the field of energy conservation, we focus on the reduction of unburned residue in ash from the combustion of biomass-based fuels and waste-for-heating purposes. Unburned residue from ash samples is examined by loss of ignition technique and by thermogravimetric analysis.

In the field of energy storage, the subgroup focuses on organic and inorganic phase change materials (PCM). PCMs are capable to absorb and release a large amount of heat due to the liquid-solid phase change. In addition to the high value of latent heat of fusion, high thermal conductivity, good thermal stability, low corrosivity, low subcooling and rapid crystallization are other important properties of PCMs. In our subgroup, these properties are determined using thermal (differential scanning calorimetry and thermogravimetric analysis DSC-TGA) and electrochemical methods.


 List of research projects since 2023

  1. National Centre for Energy II (2023–2028) TAČR – TN02000025
  2. Effect of process temperature on removal of fire retardants during sewage sludge pyrolysis, IGA 2023
  3. The effect of high-temperature biochar particle size on its agricultural use, IGA 2023

 List of research projects since 2022

  1. Effect of process temperature on the removal of per- and polyfluoroalkyl substances during sewage sludge pyrolysis, IGA 2022
  2. Thermal plasma gasification of RDF integrated with CO2-sorption enhanced reforming employing different sorbents for improved hydrogen generation, IGA 2022

List of research projects since 2021

  1. Implementation of analytical procedures of solid materials analysis at the Department of Power Engineering, JIGA 2021
  2. Equilibrium modeling and experimental validation of thermal plasma gasification of selectedsolid waste streams with simultaneous use of captured CO2, IGA 2021
  3. WASTen, z. s. - Collective research, Subproject 1 - ThermoValue - the research on value chain of products from thermal decomposition and development of methods for their certification (2021–2023) OPPIK

List of research projects since 2020

  1. Research and development project of material utilization technology of waste plastics and tires in the refinery and petrochemical industry in the Czech Republic (2020–2024), supported by the Technology Agency of the Czech Republic; FW01010158.
  2. Residual xenobiotics reduction in fresh water under specific conditions of waterworks Káraný (2020–2023), supported by the Technology Agency of the Czech Republic; SS01020063.
  3. Low-emission technologies of energy conversion of biomass and alternative fuels (2020–2025), supported by the Technology Agency of the Czech Republic; TK03030167.
  4. Biofiltration Impregnated Composite Materials and Substrates (2020–2023), supported by the Technology Agency of the Czech Republic; FW01010370.

List of papers and patents in 2023

Research papers:

  1. Staf, M., Šrámek, V., Pohořelý, M. The preparation of a carbonaceous adsorbent via batch pyrolysis of waste hemp shives. Energies. 2023, 16, 1202. DOI: 10.3390/en16031202. (WoS, IF 3.2/2022, Q3). 
  2. Vuppaladadiyam, A.K., Vuppaladadiyam, S.S.V., Sikarwar, V.S., Ahmad, E., Pant, K.K., Murugavelh, S., Pandey, A., Bhattacharya, S., Sarmah, A., Leu, S.Y. A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges. Journal of the Energy Institute. 2023, 108, 101236. DOI: 10.1016/j.joei.2023.101236. (WoS, IF 5.7 /2022, Q2).

Research papers:

  1. Kaviti, A.K., Akkala, S.R., Ali, M.A., Anusha, P., Sikarwar, V.S. Performance Improvement of Solar Desalination System Based on CeO2-MWCNT Hybrid Nanofluid. Sustainability. 2023, 15, 4268. DOI: 10.3390/su15054268. (WoS, IF 3.9 /2022, Q2).
  2. Kaviti, A.K., Akkala, S.R., Sikarwar, V.S., Sai Snehith, P., Mahesh, M. Camphor-Soothed Banana Stem Biowaste in the Productivity and Sustainability of Solar-Powered Desalination. Applied Sciences. 2023, 13, 1652. DOI: 10.3390/app13031652. (WoS, IF 2.7 /2022, Q2).
  3. Mašláni A., Hlína M., Hrabovský M., Křenek P., Sikarwar V.S., Fathi J., Raman S., Skoblia S., Jankovský O., Jiříčková A., Sharma S., Mates T., Mušálek R., Lukáč F., Jeremiáš M.: Impact of natural gas composition on steam thermal plasma assisted pyrolysis for hydrogen and solid carbon production, Energy Conversion and Management, 297, 117748, 2023. DOI: https://doi.org/10.1016/j.enconman.2023.117748. (WoS, IF 10.7 /2022, Q1*/D1) 
  4. Kaviti A.K., Akkala S.R., Sikarwar V.S., Sai Snehith P., Mahesh M.: Camphor-Soothed Banana Stem Biowaste in the Productivity and Sustainability of Solar-Powered Desalination, Applied Sciences, 13, 1652, 2023.DOI: https://doi.org/10.3390/app13031652. (WoS, IF 2.7 /2022, Q2)
  5. Kaviti A.K., Teja M., Madhukar O., Teja P.B., Aashish V., Gupta G.S., Sivaram A., Sikarwar V.S.: Productivity Augmentation of Solar Stills by Coupled Copper Tubes and Parabolic Fins, Energies, 16, 6606, 2023. DOI: https://doi.org/10.3390/cs16186606. (WoS, IF 3.2 /2022, Q3)

Patents:

  1. Šváb, M., Štěpánová, B., Skalický, M., Pohořelý, M. Zařízení pro testy regenerace aktivního uhlí z odstranění stopových xenobiotik po filtraci surové vody na vodárnách. Equipment for activated carbon recovery tests from removal of trace xenobiotics after raw water filtration at waterworks, Utility model 36914, Valid from 17. 3. 2023.

 Conferences:

  1. Hušek, M., Moško, J., Pohořelý, M. Pyrolysis of sewage sludge as an alternative to incineration, Abstract book, The 3R International Scientific Conference on Material Cycles and Waste Management (3RINCs), Kyoto, 3RINCS, 13th -18th March 2023, s. 215–216.
  2. Sedmihradská A., Pohořelý M.: Heat, power and high-temperature biochar cogeneration, Bio-Char III: Production, Characterization and Applications, Tomar, Portugal, 17–22 September 2023.
  3. Moško J., Hušek M., Pohořelý M.: Quality of sewage sludge-derived biochar from the point of organic pollutants and pyrolysis parameters, Bio-Char III: Production, Characterization and Applications, Tomar, Portugal, 17–22 September 2023.
  4. Svab M., Stepanova B., Janda V., Pohorely M., Skalicky M.: Micropollutants removal from filtered raw river water in artificial infiltration/quaternary sediments-based waterworks, 18th IWA Leading Edge Conference on Water and Wastewater Technologies, Daegu, South Korea, 29 May – 2 June 2023.
  5. Sikarwar V.S., Mašláni A., Hlína, M., Pohořelý M., Mates T., Jeremiáš M.: Possibility to recover phosphorus and produce syngas from thermal plasma assisted sewage sludge gasification, 4th International Conference for Bioresource Technology for Bioenergy, Bioproducts & Environmental Sustainability, Riva del Garda, Italy, 14–17 May 2023

 

List of papers and patents in 2022

Reviews:

  1. Sikarwar, V.S., Pfeifer, C., Ronsse, F., Pohořelý, M., Meers, E., Kaviti, A.K., Jeremiáš, M. Progress in in-situ CO2-sorption for enhanced hydrogen production. Progress in Energy and Combustion Science. 2022, 91, 101008. DOI: 10.1016/j.pecs.2022.101008. (WoS, IF 29,394 /2020/, Q1*/D1).
  2. Hušek, M., Moško, J., Pohořelý, M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. Journal of Environmental Management. 2022, 315, 115090. DOI: 10.1016/j.jenvman.2022.115090. (WoS, IF 6.789 /2020/ Q1).
  3. Svoboda, K., Pohořelý, M., Ružovič, T., Veselý, V., Brynda, J., Zach, B., Šyc, M. Mercury removal in coal-fired power plants, possibilities how to attain very low emissions and minimization of hazardous waste stream. Paliva. 2022, 14, 35-67. DOI: 10.35933/paliva.2022.01.05. (Scopus).
  4. Thakur, A.K., Singh, R., Gehlot, A., Kaviti, A.K., Aseer, R., Suraparaju, S.K., Natarajan, S.K., Sikarwar, V.S. Advancements in solar technologies for sustainable development of agricultural sector in India: a comprehensive review on challenges and opportunities. Environmental Science and Pollution Research. 2022, 29, 43607–43634. DOI: 10.1007/s11356-022-20133-0 (WoS, IF 5,190 /2021/, Q2).
  5. Mohiuddin, S.A., Kaviti, A.K., Rao, T.S., Sikarwar, V.S. Historic review and recent progress in internal design modification in solar stills. Environmental Science and Pollution Research. 2022, 29, 38825–38878. DOI: 10.1007/s11356-022-19527-x (WoS, IF 5,190 /2021/, Q2).

Research papers:

  1. Veselská, V., Šillerová, H., Hudcová, B., Ratié, G., Lacina, P., Laliská-Voleková, B., Trakal, L., Šottník, P., Jurkovič, Ľ., Pohořelý, M., Vantelon, D., Šafařík, I., Komárek, M. Innovative in situ remediation of mine waters using a layered double hydroxide-biochar composite. Journal of Hazardous Materials. 2022, 424, Part A, 127136. DOI: doi.org/10.1016/j.jhazmat.2021.127136. (WoS, IF 10,588 /2020/ Q1*/D1).
  2. Matuštík, J., Pohořelý, M., Kočí, V. Is application of biochar to soil really carbon negative? The effect of methodological decisions in Life Cycle Assessment. Science of The Total Environment. 2022, 807, Part 3. DOI: 10.1016/j.scitotenv.2021.151058. (WoS, IF 7,963 /2020/, Q1*/D1).
  3. Moško, J., Jeremiáš, M., Skoblia, S., Beňo, Z., Sikarwar, V.S., Hušek, M., Wang, H., Pohořelý, M. Residual moisture in the sewage sludge feed significantly affects the pyrolysis process: Simulation of continuous process in a batch reactor. Journal of Analytical and Applied Pyrolysis. 2022, 161, 105387. DOI: 10.1016/j.jaap.2021.105387. (WoS, IF 5,541 /2020/, Q1).
  4. Chen, H., Gao, Y., El-Naggar, A., Niazi, N. K., Sun, C., Shaheen, S. M., Hou, D., Yang, X., Tang, Z., Liu, Z., Hou, H., Chen, W., Rinklebe, J., Pohořelý, M., Wang, H. Enhanced Sorption of Trivalent Antimony by Chitosan-Loaded Biochar in Aqueous Solutions: Characterization, Performance and Mechanisms. Journal of Hazardous Materials. 2022, 425, 127971. DOI: 10.1016/j.jhazmat.2021.127971. (WoS, IF 10,588 /2020/, Q1*/D1).
  5. Lebrun, M., Bouček, J., Berchová Bímová, K., Kraus, K., Haisel, D., Kulhánek, M., Omara-Ojungu, C., Seyedsadr, S., Beesley, L., Soudek, P., Petrová, Š., Pohořelý, M., Trakal, L. Biochar in manure can suppress water stress of sugar beet (Beta vulgaris) and increase sucrose content in tubers. Science of The Total Environment. 2022, 814, 152772. DOI: 10.1016/j.scitotenv.2021.152772. (WoS, IF 7,963 /2020/, Q1*/D1).
  6. Svoboda, K., Ružovič, T., Pohořelý, M., Hartman, M., Šyc, M. Removal of Mercury from Acidic Solutions of Mercury Chloride by Means of Sorbents Prepared by Catalyzed Vulcanization of Vegetable Oils. Chemické listy. 2022, 116, 48-55. DOI: 10.54779/chl20220048. (WoS, IF 0,381 /2020/, Q4).
  7. Seyedsadr, S., Šípek, V., Jačka, L., Sněhota, M., Beesley, L., Pohořelý, M., Kovář, M., Trakal, L. Biochar considerably increases the easily available water and nutrient content in low-organic soils amended with compost and manure. Chemosphere. 2022, 293, 133586. DOI: 10.1016/j.chemosphere.2022.133586. (WoS, IF 7,086 /2020/, Q1).
  8. Mocová, K.A., Petrová, Š., Pohořelý, M., Martinec, M., Tourinho, P.S. Biochar reduces the toxicity of silver to barley (Hordeum vulgare) and springtails (Folsomia candida) in a natural soil. Environmental Science and Pollution Research. 2022. DOI: 10.1007/s11356-021-18289-2. (WoS, IF 4,223 /2020/, Q2).
  9. Joch, M., Výborná, A., Tyrolová, Y., Kudrna, V., Trakal, L., Vadroňová, M., Tichá, D., Pohořelý, M. Feeding biochar to horses: Effects on nutrient digestibility, fecal characteristics, and blood parameters. Animal Feed Science and Technology. 2022, 285, 115242. DOI: 10.1016/j.anifeedsci.2022.115242. (WoS, IF 3,247 /2020/, Q1).
  10. Sikarwar, V.S., Peela, N.R., Vuppaladadiyam, A.K., Ferreira, N.L., Maslani, A., Tomar, R., Pohořelý, M., Meers, E., Jeremiáš, M. Thermal plasma gasification of organic waste stream coupled with CO2-sorption enhanced reforming employing different sorbents for enhanced hydrogen production. RSC Advances. 2022, 12, 6122-6132. DOI: 10.1039/D1RA07719H. (WoS, IF 3,361 /2020/, Q2).
  11. Hidalgo Herrador, J.M., Babor, M., Tomar, R., Tišler, Z., Hubáček, J., de Paz Carmona, H., Frątczak, J., Vráblík, A., Ángeles, G.H. Polypropylene and rendering fat degrading to value-added chemicals by direct liquefaction and fast-pyrolysis. Biomass Conversion and Biorefinery. 2022.DOI: 10.1007/s13399-022-02405-4. (WoS, IF 4,987 /2020/ Q1).
  12. Sun, D., Ardestani, M. M., Pohořelý, M., Moško, J., Winding, A., Bonkowski, M., Zhao, Y., Frouz, J. Does micro-sized pyrogenic carbon made in lab affect earthworm mortality in restrained water content?. (short communication). Applied Soil Ecology. 2022, 177, 104540. DOI: 10.1016/j.apsoil.2022.104540. (WoS, JIF 4.046 /2020/, Q2).
  13. Sikarwar, V.S., Mašláni, A., Hlína, M., Fathi, J., Mates, T., Pohořelý, M., Meers, E., Šyc, M., Jeremiáš, M. Thermal plasma assisted pyrolysis and gasification of RDF by utilizing sequestered CO2 as gasifying agent. Journal of CO2 Utilization. 2022, 66, 102275. DOI: 10.1016/j.jcou.2022.102275. (WoS, IF 8,321 /2021/, Q1).

Patents

  1. Pohořelý, M., Staf, M., Skoblia, S., Beňo, Z. Zařízení pro dehalogenaci primárního pyrolýzního plynu. Equipment for dehalogenation of primary pyrolysis gas. Utility Model 36265, Valid from: 16. 8. 2022.
  2. Zápotocký, L., Halecký, M., Pohořelý, M. New material for preparation of substrate for biofilters, Proven technology FW01010370, 14. 12. 2022.

 Conferences

  1. Hušek, M., Moško, J., Pohořelý, M. Effect of pyrolysis temperature on the organic pollutants content of sewage sludge derived char. Abstract book, MonGOS International Conference - Water and Sewage in the Circular Economy Mode, Cracow, Polish Academy of Sciences, 2022, page 57. ISBN 978-83964171-7-6.
  2. Svoboda, K., Ružovič, T., Pohořelý, M. Efficient removal of mercury from acidic solutions of HgCl2 by sorbents prepared from vegetable oils by inverse vulcanization. Proceedings 48th International Conference of the Slovak Society of Chemical Engineering SSCHE 2022 and Membrane Conference PERMEA 2022, Bratislava, Faculty of Chemical and Food Technology STU, 2022, s. 1-13. ISBN 978-80-8208-070-7.
  3. Farták, J., Valtr, J. Comparison of Thermal Analysis Methods for the Characterization of Biomass Fuels. The World Sustainable Energy Days (WSED), Conference Proceedings World Sustainable Energy Days 2022, Wels, Austria, ISSN: 2617-5398.
  4. Moško, J., Hušek, M., Pohořelý, M. Effect of pyrolysis conditions on sludge-char properties and its soil application with regard to legislation of the Czech Republic. Workshop Series – Green Industrial Sites: Recovery of Valuable Materials. Dresden, Germany, 27 September 2022.
  5. Moško, J., Hušek, M., Pohořelý, M. Effect of pyrolysis conditions on sludge-char properties and its soil application with regard to legislation of the Czech Republic. 1st Swedish Conference on Sewage Sludge Biochar. Malmö, Sweden, 11–12 October 2022.
  6. Moško, J. Sewage sludge pyrolysis and sludge-char. Green Carbon Webinar. online, 15.12.2022.

List of papers and patents in 2021

Reviews:

  1. Sikarwar, V. S., Pohořelý, M., Meers, E., Skoblia, S., Moško, J., Jeremiáš, M. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization. Fuel. 2021, 294, 120533. DOI: doi.org/10.1016/j.fuel.2021.120533 (WoS, IF 5,578 /2019/, Q1).
  2. Akkala, S. R., Kaviti, A. K., ArunKumar, T., Sikarwar, V. S. Progress on suspended nanostructured engineering materials powered solar distillation- a review, Renewable and Sustainable Energy Reviews. 2021, 143, 110848. DOI: 10.1016/j.rser.2021.110848. (WoS, IF 14,982 /2020/, D1).
  3. Staf, M., Pohořelý, M., Skoblia, S., Beňo, Z., Šrámek, V. Stabilita pyrolýzních kondenzátů při jejich vysokoteplotním zpracování. Stability of the pyrolysis condensates during their high-temperature treatment. Paliva. 2021, 13, 131-140. ISSN 1804-2058. DOI: 10.35933/paliva.2021.04.04 (Scopus).

Research papers:

  1. Wen, E., Yang, X., Chen, H., Shaheen, S.M., Sarkar, B., Xu, S., Song, H., Liang, Y., Rinklebe, J., Hou., D., Li, Y., Wu, F., Pohořelý, M., Wong, J.W.C., Wang, H. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials. 2021, 407, 124344. DOI: 10.1016/j.jhazmat.2020.124344. (WoS, IF 9,038 /2019/, D1).
  2. Moško, J., Pohořelý, M., Cajthaml, T., Jeremiáš, M., Robles-Aguilar, A.A., Skoblia, S., Beňo, Z., Innemanová, P., Linhartová, L., Michalíková, K., Meers, E. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. Chemosphere. 2021, 265, 129082. DOI: 10.1016/j.chemosphere.2020.129082. (WoS, IF 5,778 /2019/, Q1).
  3. Mašláni, A., Hrabovský, M., Křenek, P., Hlína, M., Raman, S., Sikarwar, V. S., Jeremiáš, M.. Pyrolysis of methane via thermal steam plasma for the production of hydrogen and carbon black. International Journal of Hydrogen Energy. 2021, 46, 1605-1614. DOI: 10.1016/j.ijhydene.2020.10.105. (WoS, IF 4,939 /2019/, Q2).
  4. Moško, J., Pohořelý, M., Skoblia, S., Fajgar., R., Straka, P., Soukup, K., Beňo, Z., Farták, J., Bičáková, O., Jeremiáš, M., Šyc, M., Meers, E. Structural and chemical changes of sludge derived pyrolysis char prepared under different process temperatures. Journal of Analytical and Applied Pyrolysis. 2021, 156, 105085. DOI:doi.org/10.1016/j.jaap.2021.105085 (WoS, IF 3,905 /2019/, Q1).
  5. Zach, B., Šyc, M., Svoboda, K., Pohořelý, M. Šomplák, R., Brynda, J., Moško, J., Punčochář, M. The influence of SO2 and HCl concentrations on the consumption of sodium bicarbonate during flue gas treatment. Energy & Fuels. 2021, 35, 5064–5073. DOI: doi.org/10.1021/acs.energyfuels.0c03655. (WoS, IF 3,421 /2019/, Q2).
  6. Hartman, M., Čech, B., Pohořelý, M., Svoboda, K., Šyc, M. Slow-rate devolatilization of municipal sewage sludge and texture of residual solids. Korean Journal of Chemical Engineering. 2021, 38, 2072–2081. DOI: 10.1007/s11814-021-0847-8. (WoS, IF 3,309 /2020/ Q2).
  7. Sikarwar, V. S., Reichert, A., Pohorely, M., Meers, E., Ferreira, N. L., Jeremias, M. Equilibrium modeling of thermal plasma assisted co-valorization of difficult waste streams for syngas production, Sustainable Energy & Fuels. 2021, 5, 4650–4660. DOI: 10.1039/D1SE00998B. (WoS, IF 6,367 /2020/, Q1).
  8. Sikarwar, V. S., Reichert, A., Jeremias, M., Manovic, V. COVID-19 pandemic and global carbon dioxide emissions: A first assessment, Science of The Total Environment. 2021, 794, 148770. DOI: 10.1016/j.scitotenv.2021.148770. (WoS, IF 7,963 /2020/, D1).
  9. Kaviti, A.K., Akkala, S.R., Sikarwar, V.S. Productivity enhancement of stepped solar still by loading with magnets and suspended micro charcoal powder. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. 2021. DOI: 10.1080/15567036.2021.2006371 (WoS, IF 3,447 /2020/, Q2). 

Patents

  1. Šváb M., Štěpánková B., Skalický M., Pohořelý M., Jelínek L., Parschová H.: Zařízení pro testy odstraňování stopových xenobiotik při výrobě pitné vody. Equipment for tests to remove trace xenobiotics when producing drinking water. Utility Model 35129, Valid from: 1. 6. 2021.
  2. Zápotocký, L., Halecký, M., Pohořelý, M. Sorpční materiál pro přípravu substrátu do biofiltru. Sorption material for preparation of substrate for biofilter. Utility Model No. 35581. Valid from: 30. 11. 2021.

 

List of papers and patents in 2020

Reviews:

  1. Sikarwar, V. S., Hrabovský, M., Van Oost, G., Pohořelý, M., Jeremiáš, M. Progress in waste utilization via thermal plasma. Progress in Energy and Combustion Science. 2020, 81, 100873. DOI: 10.1016/j.pecs.2020.100873. (WoS, IF 28,938 /2019/, D1).
  2. Staf, M., Šrámek, V., Pohořelý, M. Halogenderiváty v plastech a jejich souvislost s pyrolýzou. Halogen Derivatives in Pyrolyzed Plastics. Paliva. 2020, 12, 136-148. ISSN 1804-2058. DOI: 10.35933/paliva.2020.04.01. (Scopus). 

Research papers:

  1. Brynda, J., Skoblia, S., Pohořelý, M., Beňo, Z., Soukup, K., Jeremiáš, M., Moško, J., Zach, B., Trakal, L., Šyc, M., Svoboda, K. Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel. 2020, 281, 118637. DOI: 10.1016/j.fuel.2020.118637. (WoS, IF 5,578 /2019/, Q1).
  2. Moško, J., Pohořelý, M., Skoblia, S., Beňo, Z., Jeremiáš, M. Detailed Analysis of Sewage Sludge Pyrolysis Gas: Effect of Pyrolysis Temperature. Energies. 2020, 13, 4087. DOI: 10.3390/en13164087. (WoS, IF 2,702 /2019/, Q3).
  3. Teodoro, M., Trakal, L., Gallagher, B. N., Šimek, P., Soudek, P., Pohořelý, M., Beesley, L., Jačka, L., Kovář, M., Seyedsadr, S., Mohan, D. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere. 2020, 242, 125255. DOI: 10.1016/j.chemosphere.2019.125255. (WoS, IF 5,778 /2019/, Q1).
  4. Ruzovic T., Svoboda K., Leitner J., Pohorely, M., Hartman M.: Thermodynamic possibilities of flue gas dry desulfurization, de-HCl, removal of mercury, and zinc compounds in a system with Na2CO3, Ca(OH)2, sulfur, and HBr addition. Chemical Papers. 2020, 74, 951-962. DOI:10.1007/s11696-019-00930-7. (WoS, IF 1,680 /2019/, Q3).
  5. Sedmihradská, A., Pohořelý, M., Jevič, P., Skoblia, S., Beňo, Z., Farták, J., Čech, B., Hartman, M. Pyrolysis of wheat and barley straw. Research in Agricultural Engineering. 2020, 66, 8-17. DOI: 10.17221/26/2019-RAE. (Scopus).
  6. Hásl, T., Jiříček, I., Jeremiáš, M., Farták, J., Pohořelý, M. Cost/Performance Analysis of Commercial-Grade Organic Phase-Change Materials for Low-Temperature Heat Storage. Energies. 2020, 3, 4087. DOI: 10.3390/en13010005. (WoS, IF 2,702 /2019/, Q3). 

Patents:

  1. Pohořelý, M., Picek, I., Skoblia, S., Beňo, Z., Bičáková, O. Způsob a zařízení pro energetické zpracování sušeného čistírenského kalu. Method and Device for Energy Processing Dried Sewage Sludge. Pat. No. 308451. Patented: 15. 7. 2020.

 

Updated: 16.11.2023 08:20, Author: Eva Mištová

ICT Prague
5 Technická
166 28 Prague 6 – Dejvice
IČO: 60461337
VAT: CZ60461373

Data mail: sp4j9ch

Copyright ICT Prague 2014
Informations provided by Department of International Relations, Department of R&D, technical service by Computer Centre
switch to desktop version