Prosím počkejte chvíli...
Nepřihlášený uživatel
Nacházíte se: VŠCHT PrahaFTOPÚstav energetiky  → Laboratoře → Energetické a materiálové využití biomasy, alternativních paliv a odpadů
iduzel: 9851
idvazba: 11546
šablona: stranka
čas: 23.10.2021 05:46:28
verze: 4927
uzivatel:
remoteAPIs:
branch: trunk
Obnovit | RAW

Energetické a materiálové využití biomasy, alternativních paliv a odpadů

Kontakt:  doc. Ing. Michael Pohořelý, Ph.D. 

Zaměření oddělení:

Tepelná energetika; alternativní zdroje energie; teplárenství; akumulace tepelné energie; energetické a materiálové využití odpadů, tuhých alternativních paliv, bioodpadů a biomasy; studium chemizmů procesů spalování, zplyňování, pyrolýzy; studium procesů čištění redukčních plynů a spalin; analytika tuhých paliv, biopaliv a odpadů.

Laboratoř je rozdělena na tři skupiny:

  • Termochemické procesy (Group of Pyrolysis and Gasification)
  • Analýza tuhých paliv, biopaliv, odpadů a vzorků z energetiky
  • Úspory energie a její akumulace

 

Termochemické procesy

Kontakt: doc. Ing. Michael Pohořelý, Ph.D. – Ing. Michal Jeremiáš, Ph.D. – Ing. Josef Farták, Ph.D. – Ing. Jaroslav Moško

Skupina termochemických procesů úzce spolupracuje na výzkumných úkolech s ÚPPPOO FTOP VŠCHT Praha, ÚCHP AV ČR, ÚFP AV ČR, ÚSMH AV ČR, FŽP ČZU Praha a Ghent University.

Klíčové oblasti výzkumu:

  • pokročilé pyrolýzní a zplyňovací procesy,
  • středněteplotní a vysokoteplotní čištění plynu pro aplikace,
  • materiálové a energetické využití kalů z čistíren odpadních vod,
  • výroba, charakterizace a využití biocharu,
  • chemická recyklace odpadních plastů.

Skupina se komplexně zabývá problematikou termochemických konverzí. V rámci základního výzkumu je hlavní důraz zaměřen na studium chemismů jednotlivých význačných reakcí a na hluboké čištění plynů na hodnoty akceptovatelné pro pokročilé aplikace (např. SOFC). V rámci aplikovaného výzkumu jsou průmyslové spolupráce zaměřeny na vývoj zařízení na kombinovanou výrobu elektrické energie a užitného tepla se současnou produkcí biocharu a na materiálové využití čistírenských kalů s cílem získání produktu bohatého na fosfor a využitelné energie. Další aplikovaný výzkum je zaměřen na čištění primárního pyrolýzního plynu z pyrolýzy plastového odpadu na kvalitu přijatelnou pro rafinérský / petrochemický průmysl.


 

Analýza tuhých paliv, biopaliv, odpadů a vzorků z energetiky

Kontakt: Ing. Josef Farták, Ph.D. – Ing. Ivo Jiříček, CSc – Ing. David Bouška

Skupina je zaměřena na podporu výzkumné části oddělení a nabízí servisní činnost představenou níže uvedeným příkladem a bodově.

V rámci analýzy pevných vzorků jsou vyvíjeny postupy vedoucí k rychlému a přesnému určení všech potřebných složek. Na základě známého složení lze např. určit ekologicky čistý a účinný způsob likvidace odpadu spalováním nebo skládkováním. Analýza je prováděna u tuhých, kapalných a pastovitých odpadů, u vodných výluhů odpadů a v rámci spalovacích atestů odpadů pro spalovny, cementárny apod.

  • komplexní analýza vzorků z energetiky včetně posouzení rizik (eroze, koroze pod nánosem) za účelem zvýšení životnosti provozovaných zařízení
  • voda a popel (včetně celkového rozboru popela), tavitelnost popela
  • prchavá a neprchavá hořlavina
  • spalné teplo a výhřevnost
  • bod vzplanutí
  • celkový rozklad pevných materiálů
  • testy vyluhovatelnosti
  • anionty: fluoridy, chloridy, dusitany, bromidy, dusičnany, fosfáty, sírany
  • atomovou absorpcí, či emisí: K, Na, Ca, Mg, Cu, Zn, Cd, Pb, Cr, Ni, Co, Mn, Fe, Co, …
  • optický emisní spektrometr: lze stanovit všechny prvky kromě He, O, F, Cl, At, vzácné plyny, aktinoidy a špatně se stanovují C, N, Br a Hg

 

Úspory energie a její akumulace

Kontakt: Ing. Josef Farták, Ph.D. – Ing. Ivo Jiříček, CSc

Studium v oblasti úspor energie se zaměřuje na redukci nedopalu ve vzorcích popelů ze spalování paliv na bázi biomasy a odpadů pro teplárenské účely. Nedopal ze vzorků popelů z teplárenských provozů je zkoumán pomocí termogravimetrické analýzy za různých analytických postupů, především pomocí vysoce přesných termovah.

V oblasti akumulace energií se skupina zaměřujeme na skladování tepla do organických a anorganických materiálů s fázovou přeměnou – PCM (Phase Change Materials). PCM jsou látky, které nejčastěji disponují vysokým teplem fázové přeměny. Tyto látky dokáží během své fázové přeměny absorbovat velké množství tepla, které jsou poté zpětným procesem schopny uvolnit. Důležitou vlastností každého takové materiálu je jeho latentní teplo, což představuje jeho termo akumulační vlastnosti, další důležitou vlastností je např. tepelná vodivost, teplota tání a termická stabilita. Dalšími sledovanými faktory použitelnosti PCM jsou korozivita, podchlazování a krystalizace (podchlazování a krystalizace je velkým problémem u anorganických PCM). Tyto vlastnosti se u nás stanovují pomocí termických (diferenční skenovací kalorimetrie a termogravimetrické analýzy DSC-TGA) a elektrochemických metod.


Disertační, diplomové a bakalářské práce

Pokud Vás vypsané závěrečné práce, nebo některý z řešených projektů zaujal a nebo máte vlastní téma z oblasti energetického a materiálového využití biomasy, alternativních paliv a odpadů, neváhejte nás kontaktovat a domluvit si individuální setkání. Rádi Vás přivítáme do našeho kolektivu.

 Doktorské disertační práce

Název: Studium sorbentů na dehalogenaci redukčních plynů

Vedoucí práce: doc. Ing. Michael Pohořelý, Ph.D.

Cílem disertační práce bude studium chemismu sorpce halogenovodíků a organohalogenovaných sloučenin z redukčních plynů (primární pyrolýzní plyn, pyrolýzní plyn, generátorový plyn apod.). Současný stav poznání sorpce chlorovaných sloučenin na sorbentech na bázi K, Na, Ca a Mg bude studentem zpracován do přehledného článku. V druhé části práce budou studovány procesy halogenace, zauhlíkování a kondenzace výševroucích organických látek (dehtů). Pro řešení práce budou využity sorbenty z laboratorních pokusů uskutečňovaných s cílem návrhu praktických podmínek dechlorace redukčních plynů a sorbenty z reálných provozů. Sorbenty budou studovány pomocí základních analýz, texturních charakteristik a instrumentálních metod (XRD, XRF, SEM-EDX, XPS, FTIR, Ramanova spektroskopie, NMR, a termické analytické metody apod.). Výsledkem práce bude suma relevantních dat publikovaná v původních článcích na WoS vedoucí k pochopení procesu a návrhu praktických podmínek sorpce. Výsledky projektu budou sloužit průmyslovým partnerům (investor, projekční firma, grantový partneři) pro stavbu technologické linky.

 

Název: Masokostní moučka jako zdroj cenných prvků

Vedoucí práce: doc. Ing. Michael Pohořelý, Ph.D.

Cílem disertační práce bude návrh praktických podmínek materiálového a energetického využití masokostní moučky kategorie I – III. Proces termického zpracování masokostní moučky bude vybrán na základě znalostí získaných při sepsání přehledného článku na téma práce. V druhé části práce budou provedeny laboratorní experimenty vedoucí k návrhu vhodných pracovních podmínek z pohledu energetické účinnosti procesu a kvality popelovin pro recyklaci zájmových prvků. Výsledkem práce bude již zmíněný návrh praktických provozních podmínek termického zpracování a suma relevantních dat publikovaná v původních článcích na WoS. Výsledky projektu budou sloužit průmyslovým partnerům (investor a projekční firma) pro stavbu technologické linky.

 

Název: Výroba, charakterizace a použití biocharu

Vedoucí práce: doc. Ing. Michael Pohořelý, Ph.D.

Biochar je pevný zbytek z pyrolýzy a/nebo zplyňování biomasy, který se dále využívá v zemědělství. Proces výroby biocharu bude řešen ve spolupráci s českými producenty. Vlastnosti biocharů vyrobených z různých typů biomasy budou charakterizovány ve spolupráci s ústavy AV ČR a s ČZU primárně dle Evropské normy EBC (European Biochar Certificate) a mezinárodní standardizace IBI (International Biochar Initiative – IBI Biochar Standards), dále dle evropské legislativy (Nařízení Evropského Parlamentu a Rady 2019/1009) a národních normovaných postupů dle Ústředního kontrolního a zkušebního ústavu zemědělského. Biochar bude charakterizován i dalšími speciálními, vybranými analytickými metodami (XRD, XRF, SEM-EDX, XPS, FTIR, Ramanova spektroskopie, NMR, texturní analýza, termické analytické metody apod.). Použití biocharu bude zkoumáno laboratorními testy a reálnými aplikacemi ve spolupráci s ČZU. Doktorská disertační práce bude řešena kromě zmíněných výzkumných institucí také ve spolupráci se soukromími zemědělci, výrobci krmiv a výrobci substrátů.


Diplomové práce

Název: Funkční a environmentální vlastnosti vysoko-teplotního biocharu

Vedoucí práce: doc. Ing. Michael Pohořelý, Ph.D.

Cílem práce je dle dostupných analytických metod predikovat funkční vlastnosti biocharu a potenciální environmentální rizika.

 

Název: Vysokoteplotní odstraňování chlorovodíku z modelového primárního pyrolýzního plynu – vliv typu sorbentu

Vedoucí práce: doc. Ing. Michael Pohořelý, Ph.D.

Výzkum je zaměřen na vysokoteplotní odstraňování chlorovodíku a organochlorovaných sloučenin z primárního pyrolýzního plynu vzniklého pyrolýzou odpadních plastů. Dehalogenace primárního pyrolýzního plynu je jeden z klíčových kroků chemické recyklace odpadních plastů. Cílem projektu je snížit obsah chlorovaných sloučenin v pyrolýzním kondenzátu na limitní hodnotu akceptovatelnou technologií petrochemického závodu UNIPETROL RPA v Záluží.

 

Název: Technická a fyzikálně-chemická studie získávání fosforu a těžkých kovů z popela pomocí vysokoteplotní plasmy

Vedoucí práce: Ing. Michal Jeremiáš, Ph.D.

V současné době, kdy je Evropa závislá výhradně na importovaném fosforu a fosfátových hnojivech, je patrný rostoucí trend ve využívání i jiných zdrojů fosforu, jako jsou například čistírenské kaly. Tyto kaly ale nejsou vhodné k přímému využití v zemědělství kvůli vysokému obsahu těžkých kovů a organických polutantů. Předkládaný diplomový projekt se zaměří na vyhodnocení možností zpracování popelovin ze spalování kalů s ohledem na produkci fosforu a těžkých kovů za pomoci termického plazmatu v procesu plazmové vitrifikace a plazmového tavení. Vedlejší produkty procesu mohou nalézt uplatnění ve stavebnictví či energetice.

 

Název: Termokatalytický rozklad uhlovodíků podpořený termickým plazmatem s in-situ produkcí katalytického materiálu

Vedoucí práce: Ing. Michal Jeremiáš, Ph.D.

Uhlíkové nanostruktury mají mnoho vhodných aplikací v různých průmyslových odvětvích, které závisí na jednotlivých vlastnostech různých struktur uhlíku. V tomto diplomovém projektu bude studována nukleace uhlíku, k podpoření rozklad uhlovodíků v plazmatickém prostředí s důrazem na uhlíkové katalytické chování. Vyprodukovaný uhlík bude charakterizován z hlediska jeho možného použití.


 Bakalářské práce

Název: Vlastnosti uhlíku vzniklého vysokoteplotním plazmovým krakováním zemního plynu

Vedoucí práce: Ing. Michal Jeremiáš, Ph.D.

Funkční saze (anglicky carbon black) jsou čím dál tím více žádanou komoditou na trhu, jejíž výroba od dob průmyslové revoluce neustále vzrůstá. V současnosti jsou tyto saze z více jak 95 % vyráběny v termických pecích za pomoci nedokonalého spalování různých odpadních těžkých frakcí ropy s přímými emisemi více než 4 kg CO2 na 1 kg sazí. Předkládaný bakalářský projekt se zaměří na vyhodnocení možností produkce velmi kvalitních sazí za pomoci termického plazmatu v procesu plazmového zplyňování a plazmové pyrolýzy (kde jako vedlejší produkt vzniká vodík nebo syntézní plyn).

 

Název: Energeticky efektivní paliva získávaná z biomasy a odpadů

Vedoucí práce: Ing. Ivo Jiříček, CSc.

Podle posledních studií by globální produkce biopaliv využila efektivněji dostupnou zemědělskou půdu, pokud by se biomasa přeměnila na elektrickou energii na pohon elektrických automobilů, spíše než na výrobu bioethanolu nebo bionafty. Energeticky efektivní cesty pro spalování paliv z biomasy a odpadů budou studovány laboratorními přístroji na ústavu energetiky Ú218. Experimentální práce bude zaměřena na porovnání charakteristických obsahů vody, hořlaviny a popela z termogravimetrického rozboru a technické analýzy biopaliv s cílem větší průchodnosti a automatizace analýz v přijímacích objektech tepláren. Motivací je urychlit proces odklonu českého teplárenství od spalování uhlí.

 

Název: Palivové indexy k hodnocení spalovacích vlastností paliv z biomasy

Vedoucí práce: Ing. Ivo Jiříček, CSc.

Nová paliva z biomasy uváděná na trh často nejsou přesně definována. Rozvíjejí se proto metody charakterizace paliv, které umožní minimalizovat potřebu časově náročných a drahých testů spalování. Zajímavou volbou jsou palivové indexy, poskytující možnost předběžného vyhodnocení problémů souvisejících se spalováním. Bakalářská práce je plánována jako teoretická. Spočívá ve vytvoření databáze elementárního složení paliv z biomasy a jejich popelů ze studentských prací na ústavu energetiky Ú218 a dostupných dat na internetu. Porovnáním indexů paliv budou identifikována paliva s potenciálem rizik souvisejících se spalováním, jako jsou emise NOx, HCl a SOx, PM, a dále rizik při tavení popela (zanášení výhřevných ploch sypkými nánosy, krustování nánosů, vznik eutektik s korozním účinkem).

 

Název: Stanovení živin a těžkých kovů v biocharu, v čistírenském kalu a jeho popelu

Vedoucí práce: Ing. Josef Farták, Ph.D.

Práce je zaměřena na analytiku pevných materiálů jako je biochar. Řešitel se podrobně seznámí s problematikou mikrovlnného rozkladu pevných materiálů s cílem identifikace složení těžkých kovů a nutrientů obsažených ve zkoumaném vzorku.


Laboratoř se podílí od roku 2020 na níže uvedených výzkumných projektech:

Seznam projektů od roku 2020

  1. Projekt výzkumu a vývoje technologie materiálového využití odpadních plastů a pneumatik v rafinérském a petrochemickém průmyslu v ČR (2020–2024) TAČR – FW01010158.
  2. Snížení obsahu stopových xenobiotik v pitné vodě za specifických podmínek zdroje Káraný (2020–2023) TAČR – SS01020063.
  3. Nízkoemisní technologie energetického využití biomasy a alternativních paliv (2020–2025) TAČR – TK03030167.
  4. Biofiltrační impregnované kompozitní materiály a substráty (2020–2023) TAČR – FW01010370.

 

Seznam projektů od roku 2021

  1. Zavedení analytických postupů pevných materiálů na Ústavu energetiky, JIGA 2021
  2. Rovnovážné modelování a experimentální validace plazmového zplyňování vybraných pevných odpadů s použitím zachyceného CO2, IGA 2021
  3. WASTen, z. s. - Kolektivní výzkum, Podprojekt 1 - ThermoValue – výzkum hodnotového řetězce produktů termického rozkladu a vývoj metody na jejich certifikaci (2021–2023) OPPIK

 Seznam publikací a patentů v roce 2020

Přehledné články:

  1. Sikarwar, V. S., Hrabovský, M., Van Oost, G., Pohořelý, M., Jeremiáš, M. Progress in waste utilization via thermal plasma. Progress in Energy and Combustion Science. 2020, 81, 100873. DOI: 10.1016/j.pecs.2020.100873. (WoS, IF 28,938 /2019/, D1).
  2. Staf, M., Šrámek, V., Pohořelý, M. Halogenderiváty v plastech a jejich souvislost s pyrolýzou. Paliva. 2020, 12, 136-148. ISSN 1804-2058. DOI: 10.35933/paliva.2020.04.01. (Scopus).

Původní práce:

  1. Brynda, J., Skoblia, S., Pohořelý, M., Beňo, Z., Soukup, K., Jeremiáš, M., Moško, J., Zach, B., Trakal, L., Šyc, M., Svoboda, K. Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel. 2020, 281, 118637. DOI: 10.1016/j.fuel.2020.118637. (WoS, IF 5,578 /2019/, Q1).
  2. Moško, J., Pohořelý, M., Skoblia, S., Beňo, Z., Jeremiáš, M. Detailed Analysis of Sewage Sludge Pyrolysis Gas: Effect of Pyrolysis Temperature. Energies. 2020, 13, 4087. DOI: 10.3390/en13164087. (WoS, IF 2,702 /2019/, Q3).
  3. Teodoro, M., Trakal, L., Gallagher, B. N., Šimek, P., Soudek, P., Pohořelý, M., Beesley, L., Jačka, L., Kovář, M., Seyedsadr, S., Mohan, D. Application of co-composted biochar significantly improved plant-growth relevant physical/chemical properties of a metal contaminated soil. Chemosphere. 2020, 242, 125255. DOI: 10.1016/j.chemosphere.2019.125255. (WoS, IF 5,778 /2019/, Q1).
  4. Ruzovic T., Svoboda K., Leitner J., Pohorely, M., Hartman M.: Thermodynamic possibilities of flue gas dry desulfurization, de-HCl, removal of mercury, and zinc compounds in a system with Na2CO3, Ca(OH)2, sulfur, and HBr addition. Chemical Papers. 2020, 74, 951-962. DOI:10.1007/s11696-019-00930-7. (WoS, IF 1,680 /2019/, Q3).
  5. Sedmihradská, A., Pohořelý, M., Jevič, P., Skoblia, S., Beňo, Z., Farták, J., Čech, B., Hartman, M. Pyrolysis of wheat and barley straw. Research in Agricultural Engineering. 2020, 66, 8-17. DOI: 10.17221/26/2019-RAE. (Scopus).
  6. Hásl, T., Jiříček, I., Jeremiáš, M., Farták, J., Pohořelý, M. Cost/Performance Analysis of Commercial-Grade Organic Phase-Change Materials for Low-Temperature Heat Storage. Energies. 2020, 3, 4087. DOI: 10.3390/en13010005. (WoS, IF 2,702 /2019/, Q3). 

Patenty:

  1. Pohořelý, M., Picek, I., Skoblia, S., Beňo, Z., Bičáková, O. Způsob a zařízení pro energetické zpracování sušeného čistírenského kalu. Patentový spis 308451. 15. 7. 2020.

Popularizační články

  1. Pohořelý, M., Moško, J., Hušek, M. Spalování stabilizovaného čistírenského kalu pro recyklaci fosforu - náhled do Evropy. Sovak. 2020, 2020(6), 12-18. ISSN 1210-3039. Dostupné z: http://hdl.handle.net/11104/0309448.
  2. Pohořelý, M. Čistírenské kaly a způsoby jejich zpracování. Odpadové fórum. 2020, 2020(10), 13. ISSN 1212-7779.

 

Seznam publikací a patentů v roce 2021

Přehledné články:

  1. Sikarwar, V. S., Pohořelý, M., Meers, E., Skoblia, S., Moško, J., Jeremiáš, M. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization. Fuel. 2021, 294, 120533. DOI: doi.org/10.1016/j.fuel.2021.120533 (WoS, IF 5,578 /2019/, Q1).
  2. Akkala, S. R., Kaviti, A. K., ArunKumar, T., Sikarwar, V. S. Progress on suspended nanostructured engineering materials powered solar distillation- a review, Renewable and Sustainable Energy Reviews. 2021, 143, 110848. DOI: 10.1016/j.rser.2021.110848. (WoS, IF 14,982 /2020/, D1).

 Původní práce:

  1. Wen, E., Yang, X., Chen, H., Shaheen, S.M., Sarkar, B., Xu, S., Song, H., Liang, Y., Rinklebe, J., Hou., D., Li, Y., Wu, F., Pohořelý, M., Wong, J.W.C., Wang, H. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials. 2021, 407, 124344. DOI: 10.1016/j.jhazmat.2020.124344. (WoS, IF 9,038 /2019/, D1).
  2. Moško, J., Pohořelý, M., Cajthaml, T., Jeremiáš, M., Robles-Aguilar, A.A., Skoblia, S., Beňo, Z., Innemanová, P., Linhartová, L., Michalíková, K., Meers, E. Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. Chemosphere. 2021, 265, 129082. DOI: 10.1016/j.chemosphere.2020.129082. (WoS, IF 5,778 /2019/, Q1).
  3. Mašláni, A., Hrabovský, M., Křenek, P., Hlína, M., Raman, S., Sikarwar, V. S., Jeremiáš, M.. Pyrolysis of methane via thermal steam plasma for the production of hydrogen and carbon black. International Journal of Hydrogen Energy. 2021, 46, 1605-1614. DOI: 10.1016/j.ijhydene.2020.10.105. (WoS, IF 4,939 /2019/, Q2).
  4. Moško, J., Pohořelý, M., Skoblia, S., Fajgar., R., Straka, P., Soukup, K., Beňo, Z., Farták, J., Bičáková, O., Jeremiáš, M., Šyc, M., Meers, E. Structural and chemical changes of sludge derived pyrolysis char prepared under different process temperatures. Journal of Analytical and Applied Pyrolysis. 2021, 156, 105085. DOI:doi.org/10.1016/j.jaap.2021.105085 (WoS, IF 3,905 /2019/, Q1).
  5. Zach, B., Šyc, M., Svoboda, K., Pohořelý, M. Šomplák, R., Brynda, J., Moško, J., Punčochář, M. The influence of SO2 and HCl concentrations on the consumption of sodium bicarbonate during flue gas treatment. Energy & Fuels. 2021, 35, 5064–5073. DOI: doi.org/10.1021/acs.energyfuels.0c03655. (WoS, IF 3,421 /2019/, Q2).
  6. Hartman, M., Čech, B., Pohořelý, M., Svoboda, K., Šyc, M. Slow-rate devolatilization of municipal sewage sludge and texture of residual solids. Korean Journal of Chemical Engineering. 2021, 38, 2072–2081. DOI: 10.1007/s11814-021-0847-8. (WoS, IF 3,309 /2020/ Q2).
  7. Sikarwar, V. S., Reichert, A., Pohorely, M., Meers, E., Ferreira, N. L., Jeremias, M. Equilibrium modeling of thermal plasma assisted co-valorization of difficult waste streams for syngas production, Sustainable Energy & Fuels. 2021, 5, 4650–4660. DOI: 10.1039/D1SE00998B. (WoS, IF 6,367 /2020/, Q1).
  8. Sikarwar, V. S., Reichert, A., Jeremias, M., Manovic, V. COVID-19 pandemic and global carbon dioxide emissions: A first assessment, Science of The Total Environment. 2021, 794, 148770. DOI: 10.1016/j.scitotenv.2021.148770. (WoS, IF 7,963 /2020/, D1).

Popularizační články

  1. Fuka, J., Kos, M., Pohořelý, M. Sušení a pyrolýza na ČOV Trutnov – první výsledky zkušebního provozu. Sovak. 2021, 30(7-8), 24-28. ISSN 1210-3039.

 

Seznam publikací a patentů v roce 2022

Původní práce:

  1. Veselá, V., Šillerová, H., Hudcová, B., Ratié, G., Lacina, P., Laliská-Voleková, B., Trakal, L., Šottník, P., Jurkovič, Ľ., Pohořelý, M., Vantelon, D., Šafařík, I., Komárek, M. Innovative in situ remediation of mine waters using a layered double hydroxide-biochar composite. Journal of Hazardous Materials. 2022, 424, Part A, 127136. DOI: doi.org/10.1016/j.jhazmat.2021.127136. (WoS, IF 10,588 /2020/ D1).
Aktualizováno: 12.10.2021 09:47, Autor: Eva Mištová


VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha 2014
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum
zobrazit plnou verzi